Radon–Nikodym theorem — In mathematics, the Radon–Nikodym theorem is a result in functional analysis that states that, given a measurable space ( X , Sigma;), if a sigma finite measure nu; on ( X , Sigma;) is absolutely continuous with respect to a sigma finite measure… … Wikipedia
Teorema de Radon–Nikodym — En matemáticas y particularmente en teoría de la medida, el teorema de Radon–Nikodym establece condiciones bajo las cuales se pueden generar medidas con signo absolutamente continuas respecto a una medida dada. El teorema está asociado a los… … Wikipedia Español
Derivative (generalizations) — Derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Derivatives in analysis In real, complex, and functional… … Wikipedia
Derivative — This article is an overview of the term as used in calculus. For a less technical overview of the subject, see Differential calculus. For other uses, see Derivative (disambiguation) … Wikipedia
Generalizations of the derivative — The derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Contents 1 Derivatives in analysis 1.1 Multivariable… … Wikipedia
Absolute continuity — In mathematics, the relationship between the two central operations of calculus, differentiation and integration, stated by fundamental theorem of calculus in the framework of Riemann integration, is generalized in several directions, using… … Wikipedia
Stinespring factorization theorem — In mathematics, Stinespring s dilation theorem, also called Stinespring s factorization theorem, is a result from operator theory that represents any completely positive map on a C* algebra as a composition of two completely positive maps each of … Wikipedia
Conditioning (probability) — Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations and conditional distributions are treated on three levels: discrete probabilities,… … Wikipedia
Novikov's condition — In probability theory, Novikov s condition is the sufficient condition for a stochastic process which takes the form of the Radon Nikodym derivative in Girsanov s theorem to be a martingale. If satisfied together with other conditions, Girsanov s … Wikipedia
Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… … Wikipedia
Time-scale calculus — In mathematics, time scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying … Wikipedia